calculus

极限运算法则

定理1: 两个无穷小的和是无穷小。有限个无穷小之和也是无穷小。 定理2: 有界函数和无穷小的乘积是无穷小。 推论1:常数与无穷小乘积是无穷小。 推论2:有限个无穷小的乘积也是无穷小 定理3:如果limf(x)=Alimf(x) = A, limg(x)=Blim g(x) = B, z则

  • lim[f(x)±g(x)]=limf(x)±limg(x)=A±Blim[f(x) \pm g(x)] = limf(x) \pm limg(x) = A \pm B
  • lim[f(x)×g(x)]=limf(x)×limg(x)=ABlim[f(x) \times g(x)] = limf(x) \times limg(x) = AB

定理4:若有B0B \neq 0,则

limf(x)g(x)=limf(x)limg(x)=ABlim\frac{f(x)}{g(x)} = \frac{lim f(x)}{limg(x)} = \frac{A}{B}

推论3:如果limf(x)limf(x)存在,而cc为常数,那么limcf(x)limcf(x)也存在,且limcf(x)=c×limf(x)limcf(x) = c \times limf(x) tui论4:如果limf(x)limf(x)存在,而nn为常数,那么lim[f(x)]n=lim[f(x)]nlim[f(x)]^n = lim[f(x)]^n

定理5:如果g(x)f(x)g(x) \geq f(x), 而limf(x)limf(x)limg(x)limg(x)都存在,则limg(x)limg(x)limg(x) \geq limg(x)

定理6:复合函数的极限运算法则,设函数y=f[g(x)]y = f[g(x)], 是由函数u=g(x)u = g(x)和函数y=f(u)y = f(u)复合而成的,复合函数在点x0x_0的某去心领域内有定义,若limxx0g(x)=u0lim_{x \to x_0} g(x) = u_0,limuu0f(u)=Alim_{u \to u_0}f(u) = A,则limxx0f[g(x)]=Alim_{x \to x_0} f[g(x)] = A