calculus

洛必达法则

如果当xax \to a或者xx \to \infty,两个函数F(x)F(x)f(x)f(x)都趋于零或者无穷大,那么极限limxaf(x)F(x)lim_{x \to a} \frac{f(x)}{F(x)}可能存在,也可能不存在,通常把这种极限记作未定式, 并分别简记为00\frac{0}{0}或者\frac{\infty}{\infty}

定理1:设函数f(x)f(x)F(x)F(x)满足

  1. xax \to a时,f(x)f(x)F(x)F(x)都趋于零
  2. 在点aa的去心领域内,存在f(x)f'(x)F(x)F'(x)都存在,并且F(x)0F'(x) \neq 0

那么,limxaf(x)F(x)=limxaf(x)F(x)lim_{x \to a} \frac{f(x)}{F(x)} = lim_{x \to a} \frac{f'(x)}{F'(x)}

定理2:设函数f(x)f(x)F(x)F(x)满足

  1. xx \to \infty时,f(x)f(x)F(x)F(x)都趋于零
  2. 当|x| > N时,f(x)f'(x)F(x)F'(x)都存在,并且F(x)0F'(x) \neq 0
  3. limxf(x)F(x)_{x \to \infty} \frac{f'(x)}{F'(x)}存在

那么,limxf(x)F(x)=limxf(x)F(x)lim_{x \to \infty} \frac{f(x)}{F(x)} = lim_{x \to \infty} \frac{f'(x)}{F'(x)}