calculus

函数的求导法则

函数的和差积商的求导法则

如果函数u=u(x)u=u(x)v=v(x)v=v(x)都在点xx处导,那么它们的和差积商(分母不为0)都在点xx处可导,

(u(x)±v(x))=u(x)±v(x)(u(x)v(x))=u(x)v(x)+u(x)v(x)[u(x)v(x)]=u(x)v(x)u(x)v(x)v(x)2(u(x) \pm v(x))'=u'(x) \pm v'(x) \\ (u(x)v(x))'=u'(x)v(x)+u(x)v'(x) \\ [\frac{u(x)}{v(x)}]' = \frac{u'(x)v(x)-u(x)v'(x)}{v(x)^2} (tanx)=sec2x(secx)=secxtanx(cscx)=cscxcotx(cotx)=csc2x(tan x)' = sec^2 x \\ (sec x)' = sec x \cdot tan x \\ (csc x)' = - csc x \cdot cot x \\ (cot x)' = - csc^2 x \\

反函数的求导法则

如果函数x=f(y)x =f(y)在区间I内单调可导且f(y)0f'(y) \neq 0,则它的反函数y=f1(x)y=f^{-1}(x)在区间f(I)f(I)内也可导,且

[f1(x)]=1f(y)[f^{-1}(x)]' = \frac{1}{f'(y)}

简单来说就是反函数的导数等于直接函数导数的倒数

(arcsinx)=11x2(arccosx)=11x2(arctanx)=11+x2(arccotx)=11+x2(arcsin x)' = \frac{1}{\sqrt{1-x^2}} \\ (arccos x)' = -\frac{1}{\sqrt{1-x^2}} \\ (arctan x)' = \frac{1}{1+x^2} \\ (arccot x)' = -\frac{1}{1+x^2}

复合函数的求导法则

如果函数u=u(x)u=u(x)在点xx处可导,而函数y=f[u(x)]y=f[u(x)]在点u(x)u(x)处也可导,那么复合函数y=f[u(x)]y=f[u(x)]就在点xx处可导,其导数为

[f[u(x)]]=f(u(x))u(x)或者dydx=dydududx[f[u(x)]]' = f'(u(x)) \cdot u'(x) \text{或者} \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}

基本初等函数的求导公式

(C)' = 0 \\ (x^n)' = nx^{n-1} \\ (sin x)' = cos x \\ (cos x)' = -sin x \\ (tan x)' = sec^2 x \\ (cot x)' = -csc^2 x \\ (sec x)' = sec x \cdot tan x \\ (csc x)' = - csc x \cdot cot x \\ (a^x)' = a^x \cdot ln(a) \\ (e^x)' = e^x \\ (ln x)' = \frac{1}{x} (log_a x)' = \frac{1}{x \cdot ln(a)} \\ (arcsin x)' = \frac{1}{\sqrt{1-x^2}} \\ (arccos x)' = -\frac{1}{\sqrt{1-x^2}} \\ (arctan x)' = \frac{1}{1+x^2} \\ (arccot x)' = -\frac{1}{1+x^2} $$

sh x = \frac{e^x - e^{-x}}{2} \ ch x = \frac{e^x + e^{-x}}{2} \ th x = \frac{e^x - e^{-x}}{e^x + e^{-x}} \ (sh x)' = ch x \ (ch x)' = sh x \ (th x)' = -th x + \frac{1}{2} $$

arshx=ln(x+1+x2)archx=ln(x+x21)(arshx)=11+x2(archx)=1x21arsh x = ln(x + \sqrt{1+x^2}) \\ arch x = ln(x + \sqrt{x^2 - 1}) \\ (arsh x)' = \frac{1}{\sqrt{1+x^2}} \\ (arch x)' = \frac{1}{\sqrt{x^2 - 1}}