函数的求导法则
函数的和差积商的求导法则
如果函数u=u(x)和v=v(x)都在点x处导,那么它们的和差积商(分母不为0)都在点x处可导,
(u(x)±v(x))′=u′(x)±v′(x)(u(x)v(x))′=u′(x)v(x)+u(x)v′(x)[v(x)u(x)]′=v(x)2u′(x)v(x)−u(x)v′(x)
(tanx)′=sec2x(secx)′=secx⋅tanx(cscx)′=−cscx⋅cotx(cotx)′=−csc2x
反函数的求导法则
如果函数x=f(y)在区间I内单调可导且f′(y)=0,则它的反函数y=f−1(x)在区间f(I)内也可导,且
[f−1(x)]′=f′(y)1
简单来说就是反函数的导数等于直接函数导数的倒数
(arcsinx)′=1−x21(arccosx)′=−1−x21(arctanx)′=1+x21(arccotx)′=−1+x21
复合函数的求导法则
如果函数u=u(x)在点x处可导,而函数y=f[u(x)]在点u(x)处也可导,那么复合函数y=f[u(x)]就在点x处可导,其导数为
[f[u(x)]]′=f′(u(x))⋅u′(x)或者dxdy=dudy⋅dxdu
基本初等函数的求导公式
(C)' = 0 \\
(x^n)' = nx^{n-1} \\
(sin x)' = cos x \\
(cos x)' = -sin x \\
(tan x)' = sec^2 x \\
(cot x)' = -csc^2 x \\
(sec x)' = sec x \cdot tan x \\
(csc x)' = - csc x \cdot cot x \\
(a^x)' = a^x \cdot ln(a) \\
(e^x)' = e^x \\
(ln x)' = \frac{1}{x}
(log_a x)' = \frac{1}{x \cdot ln(a)} \\
(arcsin x)' = \frac{1}{\sqrt{1-x^2}} \\
(arccos x)' = -\frac{1}{\sqrt{1-x^2}} \\
(arctan x)' = \frac{1}{1+x^2} \\
(arccot x)' = -\frac{1}{1+x^2}
$$
sh x = \frac{e^x - e^{-x}}{2} \
ch x = \frac{e^x + e^{-x}}{2} \
th x = \frac{e^x - e^{-x}}{e^x + e^{-x}} \
(sh x)' = ch x \
(ch x)' = sh x \
(th x)' = -th x + \frac{1}{2}
$$
arshx=ln(x+1+x2)archx=ln(x+x2−1)(arshx)′=1+x21(archx)′=x2−11